Third Semester B.E. Degree Examination, December 2011 **Network Analysis**

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

For the network shown in Fig. Q1(a), determine the voltage 'V' using source shift and /or source transformation techniques only. (06 Marks)

Find I₁, I₂, I₃ and I₄ using mesh analysis in the network shown in Fig. Q1(b). (07 Marks)

Find the voltages at nodes 1, 2, 3 for the network shown in Fig. 1(c), using nodal analysis. (07 Marks)

- 2 Define with examples:
 - i) Oriented graph ii) Tree iii) Fundamental cut set iv) Fundamental tie –set. (06 Marks)
 - b. For the network shown in Fig. Q2(b), write the graph of the network and obtain the tie set schedule considering J_1 , J_2 , J_5 as tree branches. Calculate all the branch currents.

For the network given in Fig. Q2(c), write the f - cutest matrix considering branches b₁ and b₃ as tree branches and hence, obtain the equilibrium equation on node basis and calculate the node voltages. (07 Marks)

3 a. State and prove the reciprocity theorem.

(06 Marks)

b. Using the superposition theorem, obtain the response I for the network shown in Fig. 3(b).

(07 Marks)

210g → 2190A

Fig. Q3(b)

c. Find the Thevenin's equivalent circuit across A, B using Millman's theorem and find the current through the load $(5 + j5) \Omega$, shown in Fig. 3(c). (07 Marks)

4 a. State and prove Thevenin's theorem.

(06 Marks)

b. Find the Thevenin's equivalent of the network shown in Fig. Q4(b).

(07 Marks)

c. What will be the value of R_L to get maximum power delivered to it? What is the value of this power? Refer the network shown in Fig. Q4(c). (07 Marks)

PART - B

- 5 a. A series resonant circuit includes $1\mu F$ capacitor and a resistance of 16Ω . If the BW is 500 rad/sec, determine: i) W_r ii) Q iii) L. (06 Marks)
 - b. Derive the expression for parallel resonance circuit, containing resistance in both the branches. Also show that the circuit will resonate at all frequencies if $R_L = R_C = \sqrt{\frac{L}{C}}$.

(10 Marks)

c. Give the comparison between the series resonance and parallel resonance.

(04 Marks)

- 6 a. In the network shown in Fig. Q6(a), the switch is moved from position '1' to position 2 at t = 0, the steady state having reached before switching. Calculate i, $\frac{di}{dt^2}$, and $\frac{d^2i}{dt^2}$ all at $t = 0^+$.
 - b. In the network shown in Fig. 6(b), a steady state is reached with the switch K open. At t = 0, the switch K is closed. Obtain the initial values of

i) i ii) i_2 iii) v_c iv) $\frac{di_1}{dt}$ v) $\frac{di_2}{dt}$ and $\frac{di_1}{dt}$ at $t = \infty$. (10 Marks)

- 7 a. In the circuit of Fig. Q7(a), the source voltage is $v(t) = 50 \sin 250 t$. Using Laplace transforms, determine the current, when switch K is closed at t = 0. (10 Marks)
 - b. In the network shown in Fig. 7(b), the switch K is closed and the steady state is reached. At t = 0, the switch is opened. Find the expression for the current in the inductor using Laplace transform.

- 8 a. Derive Y parameters and transmission parameters in terms of Z parameters. (10 Marks)
 - b. Find the transmission parameters for the given R C network shown in Fig. 8(b). (10 Marks)

